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Method of Calculating Molecular Weight Distribution 
Function from Gel Permeation Chromatograms. 

111. Application of the Method 

1,. H. TUNG, Physical Research Laboratory, The Dow Chemical Company, 
Midland, Michigan 

Synopsis 

Six examples were used to illustrate the application of a previously reported method 
of calculating molecular weight distribution from gel permeation chromatograms. 
These examples show that the correction for the imperfect resolution of the GPC column 
is important when the distribution is narrow but minor when the distribution is broad. 
They show also that the variation of the resolution factor h, defined previously, with 
eluent volume can be neglected in the calculation. When the chromatograms are very 
narrow in distribution or when they are complex some difficulties are encountered. The 
two computer programs written to implement the previously described numerical calcu- 
lat,ions are shown to be adequate for these difficult cases but there are also limitations. 

INTRODUCTION 

In  the determination of molecular weight distribution by gel permeation 
chromatography (GPC), one is interested in not only the positions but also 
the shapes of the peaks in the chromatogram. The shape of a peak is, 
however, influenced by the resolution of the GPC column. To correct for 
this effect Hess and Kratz' used an unsymmetrical function to represent the 
broadening of the peak caused by the imperfect resolution. In  their treat- 
ment the distribution was assumed to consist of an arbitrary number of 
discrete species. Another proposal for this correction,. described in an 
earlier paper2 of this series, used a symmetrical Gaussian function to repre- 
sent the broadening effect and treated the distribution as a continuous func- 
tion. 

It has been demonstrated in a second paper3 of this series that the com- 
putation scheme using Gaussian function and continuous distribution 
agreed well with the performance of a GPC column. Two computer 
programs have been written for this computation scheme. In this paper 
six examples are used to show how these computer programs can be advan- 
tageously applied to actual GPC chromatograms and to what extent chro- 
matograms are affected by the imperfect resolution of the columns. Some 
limitations of the computation scheme are also discussed. 
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COMPUTER PROGRAMS 

The integral equation relating the corrected chromatogram, W(y), to 
the experimental chromatogram, F(v) ,  is given by 

where h is the resolution factor representing the degree of the broadening 
effect as defined in the earlier paper;2 v and y are both eluent volumes, y 
denoting the eluent volume as the variable under the definite integral sign; 
v, and v b  are the initial and final eluent volume of the experimental chro- 
matogram, respectively. The two computer programs described below 
were written to implement the two numerical methods of solving eq. (1) 
given in the earlier paper.2 

Program I : Solution by Using The Gaussian Quadrature Formula 
The Gaussian quadrature approximation for eq. (1) can be written as 

where 

Yf = xf(vb - vo)/2 + ( v b  + va)/2 

G ,  are the Gaussian weighing coefficients and xf  are the Gaussian abscissas. 
In eq. (2) the function W(y) becomes n discrete unknowns, W(yJ.  Each 
pair of F(v )  and v read from the chromatogram gives one equation of the 
above form. The best values of W(yJ are determined from n or more of 
these equations. This optimization of W(yf) is done by linear programming 
in which only positive values of W(yf) are accepted. The program allows 
n to be chosen from four different values: The number 
of data points to be read from the chromatogram must be equal or greater 
than n. Six significant digits are used for the largest coefficient 
( G f l / h T T  e-hi(u--Yi)* ) for W(y,) in the set of simultaneous equations. 
Any coefficients smaller than times this largest coefficient are treated 
as zero. 

16,20, 24, and 32. 

Program I1 : Solution by Using Polynomial Expansion 

In  this method the resolution factor h is treated as a constant and eq. (1) 
is simplified to 

F(v)  is then replaced by a polynomial 
n' 
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where q, yo, and U i  are adjustable parameters and coefficients. The 
function W(y) is expanded similarly and term by term integration is carried 
out. Finally by the comparison of coefficients of like power of (v - yo), 
W(y) is solved. 

The success of this method depends greatly on how well the chromato- 
gram can be fitted by eq. (4) with a finite number of terms. In  this pro- 
gram this fitting is done by the method of moments making use of the 
Hermite polynomials. The number of terms, n’, is limited from 1 to 32 
as U i  for i greater than 30 are usually smaller than 1 X the smallest 
nonzero number which can be handled by the digital computer used for the 
present calculations. By virtue of the above method of moments, when 
n’ is 1 or 2, eq. (4) reduces to the Gaussian function (the case n’ = 0). 

EXAMPLES 

Example I : Single Peak, Broad Distribution 

For this example the relation of the resolution factor h with the eluent 
volume is shown by curve A in Figure 1 ;  the molecular weight-eluent 
volume relationship is given by 

21 = 211 - 21(logM) (5)  
The GPC column for this and all other five examples consisted of three 
4-ft. sections and had a plate count of 680/ft. (by method described in 
manual of the instrument). As the chromatogram of this example covered 
a range where h varied about six-fold, program I was used first. The cir- 
cles in Figure 2 show the results calculated with n = 20. The ordinate, 
W*(logM), in the figure is the distribution function with respect to the 
logarithm of molecular weight. The points a t  both ends of the distribution 
curve oscillated and obviously do not represent the true distribution. 
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Fig. 1. Variation of the resolut,ion fact.or h with respect to the eluent volume. 
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Fig. 3. Chromatogram of example I. 

When n = 16 the oscillation disappeared but agreement between F(u) 
calculated from the optimized W(yJ and the original F(v)  was unacceptable. 
At 12 = 24 the oscillation was even more severe than at  n = 20. 

The resolution factor h used for the calcula- 
tion was that corresponded to the peak of the chromatogram. The curve 
represented by the solid line in Figure 2 is the result. The fit between the 
polynomial calculated by Program I1 and the experimental chromatogram 
is shown in Figure 3. 

The result of a third calculation is shown by the crosses in Figure 2. 
Program I was used in the third calculation using a variable h. The data 
used, however, were those smoothed by the 32-term polynomial shown in 

Program I1 was tried next. 
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TABLE I 
,@Jam Ratios for Example I 

Method of calculation %,/an 
Uncorrected 
Program I, n = 20 
Program I, n = 24 
Program 11, n' = 32 
Program I on smoothed data 

7.56 
7.16 
7.14 
7.12 
7.00 

Figure 3. As the agreement of this polynomial with the chromatogram is 
well within the experimental errors, the crosses in Figure 2 should represent 
the true molecular weight distribution of the sample. The weight-average 
to number-average molecular weight ratios, M,,,/M,,, obtained from these 
calculations are shown in Table I. 

A few observations can be made from these calculations. ( I )  At both 
ends of a chromatogram where data cannot be read with high precision, the 
best solution calculated by program I is often not rational. When the 
data are smoothed by the polynomial of program 11, program I then gives 
good results. (2) The crosses and the solid line curve in Figure 2 are almost 
indistinguishable. Thus the variation of h with eluent volume can be ig- 
nored, a fact that justifies the use of Program I1 for treating broad-distri- 
bution chromatograms even when h is not constant. (3) The difference 
shown in Figure 2 between the distribution corrected for resolution and 
that uncorrected is minor for the present broad-distribution sample. 
(4)  It has been shown earlier2 that if the chromatogram is representable by 
the polynomial in eq. (4), the average molecular weights can be calculated 
by the following equations: 

The symbols in these equations were defined in the earlier paper. For the 
two n' values tried for this example, these equations were found to be use- 
able only when n' = 16 but not when n' = 32. The average molecular 
weights for n' = 32 shown in Table I were calculated numerically with 
v, and vb as the limits of integration. This inconsistency indicates that the 
polynomial (32-term) for the solution W(y) has nonzero values outside the 
limits of v, and vb. In spite of this nature, W(y) still represents the distri- 
bution correctly in the region of interest. 

Example I1 : Single Peak, Narrow Distribution 

The resolution and molecular weight calibration for this example are the 
Figure 4 shows the experimental chromato- same as those for example I. 
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Fig. 5. Molecular weight, distribut,ion curves of example 11. 

gram and the polynomial calculated by program I1 with n' = 3. Figure 5 
shows the uncorrected distribution and the distribution calculated by pro- 
gram I1 with n' = 3 and an h which corresponded to the eluent volume at  
the peak. The correction for resolution shown in Figure 5 is much more 
significant than that for the previous example. Program I was tried on 
both the unsmoothed and the smoothed data. Both gave irrational re- 
sults. 

In  this example, although a slightly better fit between the polynomial 
and the experimental chromatogram was obtained when n' was greater than 
3, the distribution calculated was irrational. In  many cases of still nar- 
rower distribution the chromatogram can only be approximated by the 
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MOL.WTx 

Fig. 6. Comparison of the log-normal and the Schulz distribution. 

Gaussian function (n' = 0, 1, or 2). It appears then that the correction 
for resolution is more difficult to apply when the need is the most. How- 
ever, for many narrow distribution chromatograms the Gaussian function 
is not a bad approximation. The reason is that many distribution func- 
tions become alike when the distribution is narrow. The comparison of 
log-normal distribution and the Schulz distribution4 at different -4Tw/nn 
ratios shown in Figure 6 illustrates this point. The log-normal distribution, 
eq. (8), is the form for W(y) when the chromatogram is Gaussian. 

= ( 1 / 0 4 ) ( 1 / ~ )  exp { - [ I ~ ( M / M ~ ) I ~ / o ~ )  (8) 
The Schulz distribution, eq. (9), is known to correlate well the molecular 
weight distribution of many free radical-polymerized vinyl polymers and 
many condensation polymers. 

W ( M )  = (-In + 1~~ + laM/r(b + 2) (9) 

The symbols 0, Mo, b, and a are adjustable parameters. 

Example I11 : Two Peaks, Broad Distribution 

follow is shown by curve B in Figure 1. 
volume relationship for these four examples is given by 

The resolution factor h of this example and the three other examples to 
The molecular weight-eluent 

v = 204.29 - 18.83(10gM) (10) 
Figure 7 shows the experimental chromatogram and the 31-term poly- 

nomial calculated by program 11. The distribution calculated by program 
I1 by use of an h which corresponded to the eluent volume midway between 
the two peaks is shown in Figure 8. Because of the poor fit a t  the peaks in 
Figure 7 the distribution calculated is distorted a t  the peaks. 
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Fig. 8. Molecular weight distribution curves of example 111. 

An attcmpt was made to compute the distribution by program I using 
the original data. Like example I, the calculated result oscillated at both 
ends of the distribution curve. A final calculation was made using program 
I and the original data at the peaks but smoothed data at  the ends of the 
chromatogram where good fit existed between the polynomial and the ex- 
perimental chromatogram. This result is shown by the crosses in Figure 8 
and they should represent points closest to the true molecular weight 
distribution of the sample. 

As in the case of broad single-peak distribution, the correction of resolu- 
tion for this example is minor. The agreement between the distributions 
calculated by program I and program I1 at the two ends shows again that 
the variation of h with eluent volume can be ignored. The ATw/JTn ratios 
calculated by the two programs agree also closely. Thus the distortion 
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at the peaks of the curve calculated by program I1 did not influence appre- 
ciably the iVn/iVw ratio. 

Example IV : Two Peaks, Narrow Distribution 

As shown in Figure 9 a good fit between the experimental chromatogram 
and a 31-term polynomial calculated by program I1 was obtained for this 
example. The distribution calculated by using an h which corresponded 
to the eluent volume midway between the two peaks is shown in Figure 10. 
The correction for resolution for this case is again large as in the case of 
single-peak narrow distribution. 

Attempts were made to calculate the distribution by program I with 
both the original data and the smoothed data. Neither results were 
satisfactory. 
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Fig. 11. Chromatogram of example V. 

Example V : Broad Peak Distribution 

Figure 11 shows the experimental chromatogram of this sample and the 
fit of a 31-term polynomial computed by program 11. Figure 12 shows the 
distribution calculated from program I1 using an h which corresponded to 
the eluent volume at  the peak, the distribution calculated by program I 
for partially smoothed data points, and the uncorrected distribution. 

The fit shown in Figure 11 appears to be reasonable. However, the slight 
deviation of the fit a t  the peak made the appearance of the two peaks more 
apparent in the distribution calculated by program I1 than that calculated 
by program I. The extent of the deviation shown in Figure 11 is probably 
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in the same order of the errors involved in the experimental reproducibility 
and the human ability in reading the chromatogram. This example there- 
fore gives an indication of the uncertainty in determining the shape of a 
distribution. 

Example VI: Minor Peak at One End of a Broad Distribution 

As shown in Figures 13 and 14 such a chromatogram cannot be fitted 
satisfactorily by the polynomial of program I1 nor can it be treated satis- 
factorily by program I. The exact molecular weight distribution of this 
sample therefore cannot be determined by the present calculation methods. 

The B w / M n  ratio (shown in Fig. 14) calculated by program I is obviously 
too high; that calculated by program I1 is closer to the true value. In 
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Fig. 14. Molecular weight distribution curves of example VI. 
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example I the am/mn ratio calculated by program I on unsmoothed data 
was correct, although the distribution oscillated at the ends. 

DISCUSSIONS 
The above examples show that the importance of the correction of resolu- 

tion depends on the distribution of the samples; less for broad distribution 
and more for narrow distribution. 

In  the application of the present calculation methods, whenever the ex- 
perimental chromatograms can be fitted by the polynomial of eq. (4), 
program I1 is suitable even when h, the resolution factor, varies with the 
eluent volume. Generally, the larger the number of terms n‘ used in 
the polynomial, the better the fit. For narrow distributions, however, 
the best fit may yield irrational molecular weight distributions and smaller 
n’ must be used. One may be limited to n’ = 1 (or equivalently n’ = 0, 
n’ = 2) for some very narrow molecular weight distribution samples. 

For complex chromatograms a good fit by the polynomial sometimes is 
not possible. Program I then must be used if one does not wish to ignore 
the correction for resolution. Program I in its present form often produces 
results that oscillate at  the ends of the distribution. This oscillation can 
be removed in most cases by substituting the original data points at the 
ends of the chromatogram with points smoothed by the polynomial if 
there is good fit between the polynomial and the chromatogram in these 
regions. Like example VI there are occasional cases the chromatograms 
are so complex that none of the two programs can be used satisfactorily. 

A reason for the above difficulties is that eq. (1) requires a certain con- 
sistency in the input data for W(y) to be positive and nonoscillatory. This 
consistency of data often demands more significant digits than can be 
read from the experimental chromatograms. In program I1 the data 
points are smoothed by the polynomial before the actually calculation and 
this demand becomes less critical. In program I the experimental data are 
used directly and consequently it is more troublesome to use. Another 
source of the data inconsistency is the distortion of the chromatogram from 
the ideal shape due to experimental errors. The narrower the distribution, 
the more stringent is this requirement. 

It is unlikely that the above condition is caused by the assumption of the 
Gaussian function to represent the broadening effect of imperfect resolu- 
tion. Rather, it is difficult to avoid this small deviation from perfect 
consistency in the experimental chromatogram no matter how perfect the 
assumed function describes the ideal broadening effect. It should be noted 
that program I can be easily modified to accommodate other functions for 
this broadening effect beside the Gaussian function used in the present 
work. Program I can also be modified so that it is less sensitive to the in- 
consistency of input data. This modification has not been made because 
most of the chromatograms encountered by us can be adequately treated 
by the existing programs, and their accuracy is consistent with the experi- 
mental errors of the GPC units. 
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R6SUmi5 

Six Qchantillons ont B t k  utilisBs pour illustrer l’application de la mBthode rapporthe 
antkrieurement concernant le calcul de la distribution des poids molBculaires au depart 
de chromatogrammes par permeation sur gel. Ces exernples montrent que la correction 
pour une rBsolution imparfaite de la colonne GPC est importante lorsque la distribution 
est Btroite mais moindre lorsque la distribution a t  large. Ces exemples montrent Bgale- 
ment que la variation du facteur de rksolution h (dQfini prBcBdemment) avec le volume 
eluant peut &re neglige dans ce calcul. Lorsque les chromatogrammes sont trbs Btroits 
de distribution ou lorsqu’ils sont complexes, on rencontre certaines difficult&. Les deux 
programmes de calcul en vue d’effectuer les calculs numkriques, dBcrits precQdemment, 
sont adbquats dam le cas de ces difficult& mais sont Qgalement soumis B certaines limita- 
tions. 

Zusammen fassung 
Eine fruher angegebene Methode zur Berechnung der Molekulargewichtsverteilung 

von Gelpermeationschromatogrammen wurde an sechs Beispielen erlautert. Diese 
Beispiele zeigen, dass die Korrektur fur die unvollstandige Auflosung der GPCSaule bei 
enger Verteilung wichtig ist, bei breiter Verteilung jedoch geringe Bedeutung hat. Sie 
zeigen auch, dass die Abhangigkeit des fruher definierten Auslosungsfaktors h vom 
Elutionsvolumen bei der Berechnung vernachliissigt werden kann. Bei Chromatogram- 
men mit sehr enger Verteilung oder bei komplexen Chromatogrammen treten gewisse 
Schwierigkeiten auf. Zwei zur Erganzung der friiher beschriebenen numerischen 
Berechnungen geschriebene Computerprogramme erweisen sich fur diese schwierigen 
Falle als adaquat, aber auch hier treton Begrenzungen auf. 
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